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Abstract 

The impedance test results of the steel reinforcement of various diameters, which was passivated and corroded in concrete specimens, 

were analysed. The impedance plots clearly indicated the tendencies for spectra shapes of steel rebars to change depending on their 

diameters. A 3-dimensional model of steel-concrete system was developed to explain the observed effect. This system was composed of 

the identical electrical equivalent circuits connected in parallel. Each equivalent scheme was characteristic for a theoretical conductive 

path during the measurement, which was defined between a counter-electrode and the reinforcement. This model was used with the 

rectangular counter electrode to simulate the formation of impedance spectra characteristic for a single reinforcing bar with the concrete 

cover of any thickness, a variable diameter and a variable polarization area. The simulation modelling the impact of various reinforcement 

diameters verified the tendencies for impedance spectra of steel in concrete to change their shapes. The improved of fitting quality of the 

model spectra to the experimental ones were obtained by considering in that model the moisture content in concrete. 
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Introduction 

The corrosive degradation of reinforced concrete structures [1-3] presents a real threat to their safe use and the reliability 

[4], [5]. Thus, the competence for assessing the corrosion risk properly and taking proper repair actions if necessary, is 

extremely important [6-10]. The application of the polarization techniques [11] and particularly the method of impedance 

spectroscopy for assessing the corrosion rate of the reinforcement in the reinforced concrete structures encounters 

considerable difficulties [12]. These problems are related to complex measurement conditions and the complicated testing 

system. The studies are carried out using the potentiostat in a three-electrode system, in which the structure reinforcement 

(made of long steel bars) serves as the working electrode, and the electrode of known and satisfactory reversible potential 

serves as the reference electrode. The counter-electrode is applied to the surface of the reinforced concrete element to make 

the reinforcement polarization possible. The counter-electrode along with the reference electrode in a single enclosure 

formed the so called measuring head. The use of the head created a situation considerably different from the laboratory 

conditions form the measurement in an electrochemical vessel in which the large counter electrode uniformly polarizes the 

small tested electrode of a simple geometry. Regarding the measurements on the reinforcement in the reinforced concrete 

elements, the area of the tested electrode was significantly larger than that of the counter electrode applied to concrete. This 

resulted in the very non-uniform polarization of steel rebars. Moreover, the polarization area of the reinforcement required 

for assessing the rate of the electrochemical processes was unknown. The additional counter electrode in a form of a guard 

ring reducing the distribution of the polarization currents solves the above problem in large – cf [13]. The additional setback 

to interpret correctly the measurements on steel impedance in concrete were caused by various activity levels of the 

reinforcement insert surfaces. 
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The first attempt to apply the impedance spectroscopy for monitoring the corrosion of concrete specimens immersed in 

salt water was described in the paper [14]. The authors suggested that the electrical equivalent circuit composed of two R-C 

systems in series, one of them with Warburg impedance, could be used to analyse the obtained impedance spectra. 

In consecutive years, other papers describing new proposals of equivalent schemes were published. However, the studies 

were mainly carried out on small specimens. A different interpretation of the impedance spectrum for the concrete 

reinforcement was proposed in the paper [15] describing the electrical model of steel-concrete system based on the 

transmission line. This paper described an interesting, but not experimentally verified, method of detecting local corrosion 

on long reinforcement rods. The paper [16] presented a slightly different approach towards modelling the response to the 

AC polarization of long rebars in concrete. Similarly to the model of transmission lines, the authors connected a few 

Randles circuits in parallel, each of them was assigned to a conceptually selected section of the long reinforcement rods 

with the cover. Additionally, the reference electrode and the counter electrode were assumed to be geometrically 

concentrated at one point. The above briefly described evolution of modelling the system of the long reinforcement bars in 

concrete demonstrated that the traditional modelling of single electrical equivalent schemes did not allow the 

electrochemistry of the tested system to be fully represented.  

The study on the above papers and the own studies on corrosion performed on the large-sized reinforced concrete 

structures became a source of inspiration for making an attempt to prepare the model description of the impact of the 

complex steel-concrete system geometry on the shapes of obtained impedance spectra. The experimental tests and the model 

simulations described in this paper refer to the system composed of a long reinforcing bar placed in a cuboidal concrete 

specimen. 

1. Course and results of experimental studies 

5 types of specimens having identical overall dimensions of 250×100×100 mm were developed for the experimental 

purpose – Fig. 1a. The elements were made in two runs S1 and S2 – 10 pieces in total. The series S1 was made of concrete 

characterized by the best protective properties regarding reinforcing steel, while the series S2 was made of concrete with 

reduced protective properties regarding steel, because 2% CaCl2 related to cement mass was added to the concrete mix. 

 

Fig. 1. Specimens (a) and the test stand (b) for measuring impedance of reinforcing steel in concrete – described in the text. 

The rebars of five diameters, φ = 8, 12, 16, 20 and 25 mm respectively, were used while maintaining the constant cover 

thickness c = 20 mm. Each concrete specimen was reinforced with a single rebar made of smooth steel of S235JR grade. 

The concrete mix, with water-cement ratio w/c = 0.43, per 1 m
3 of concrete was composed of: 489 kg of Portland cement 

32.5R; 501 kg of fine aggregate with the fraction up to 2 mm; 1168 kg of coarse aggregate with the fraction of 2-8 mm and 

212 litres of water. 

The impedance was measured in a three-electrode system at a test stand illustrated in Fig. 1b. The rebars of various 

diameters and the same length of 250 mm were used as the working electrodes 1. The electrode Cl
–/AgCl,Ag in the plastic 

enclosure served as the reference electrode 2. And a sheet of stainless steel of 250×100 m dimensions and 2 mm width was 

used as the counter electrode 3. A hole of 7 mm diameter was made in the geometric centre of gravity in the counter 

electrode 3 to introduce a glass end of the reference electrode 2. The specimens and the counter electrodes were protected 

with a foil 4 to minimize the impact of changes in concrete moisture during the measurements. The counter electrodes 3 

were placed on the top surface of the specimen using wet felt 5 to ensure the proper electric contact of the counter electrode 

and the reference electrode with concrete. The counter electrode's uniform contact with concrete through the felt was 

obtained by concrete weights 6 which provided the optimum pressure of 30 g/cm
2. The described three-electrode system 

was connected to the potentiostat 7 which controlled the performance of impedance measurements. 



458   Mariusz Jaśniok  /  Procedia Engineering   57  ( 2013 )  456 – 465 

24 hours before the impedance measurements, the specimens were immersed in tap water up to the half of the 

reinforcement cover thickness to activate the electrode processes. The wet surface of the specimen was dried with absorbent 

paper directly after taking it out of water, and the moisture content in ca. 50 mm concrete layer towards the cover thickness 

was measured in 9 uniformly arranged spots using the dielectric hygrometer. 

The main impedance measurements were performed with Gamry Reference 600 potentiostat after ca. 2-3 hours of 

potential stabilization of the reinforcement. The measurements were conducted in a potentiostatic mode at the fixed range of 

frequencies 1 MHz÷10 MHz and the potential amplitude of 10 mV regarding the stationary potential of the reinforcement. 

Fig. 2 illustrates a 3D view of the shapes of impedance spectra for five steel rebars of φ8, φ12, φ16, φ20 and φ25 mm 

diameters in the concrete specimens of S1 and S2 series. Additionally, a classic presentation of the same measurement 

results was shown on the Nyquist (Fig. 5c, h) and Bode plots (Fig. 5e, j) in the chapter on the comparative analysis of the 

studies using the theoretical model. 

 

Fig. 2. The results of impedance measurements on steel rebars of φ = 8, 12, 16, 20 and 25 mm diameters in the concrete specimens of S1 and S2 series. 

The comparison of these two groups of spectra (Fig. 2a, b) indicated that for concrete of S1 series, the impedance of the 

steel-concrete system was over three times lower than in the case of concrete of S1 series. This effect is more visible on the 

Bode plots (Figs 5e, 5j), at which the impedance modulus Z of reinforcing steel in S1 concrete at low frequencies reached 

the level of 4.3÷7.8 kΩ, whereas S2 concrete reached the level of 1.8÷2.4 kΩ. The phase shift angles at low-frequencies 

characterizing the properties of steel in S2 concrete, were nearly three times lower than in S1 concrete, Fig. 5e, j. Moreover, 

a slope and a distribution length of the real impedance intercepts on the complex plane Zre–Zim (Fig. 5c, h and Fig. 2) in S2 

concrete were shorter than on the plots for S1 series. The presented differences between these two groups of spectra can 

support the initial assumption about the depassivation of steel in S2 concrete containing chlorides and the passivation of 

steel in S1 concrete. 

Besides the above discussed features describing the electrochemical state of steel in concrete, a very clear tendency 

towards changes in spectra shapes resulting from various geometries of the tested steel-concrete systems were observed on 

the impedance plots. A very clear relationship could be observed which demonstrated that the spectra were getting smaller 

and at the same time shifted towards lower values of the real impedance axis along with the increasing diameter of the 

tested rebars, see Figs 2, 5c, h. The highest impedance values were obtained for steel of φ8 mm diameter in S1 concrete (P1 

spectrum), whereas the lowest values were obtained for steel of φ25 mm diameter in S2 concrete (P5 spectrum). The model 

described below was used to make an attempt to explain theoretically the effects related to the impact of the geometry of the 

steel-concrete system on the shapes of obtained spectra.  

2. The “3D” model of the steel-concrete system 

The three-electrode measurement system to analyse and simulate the measurements of reinforcing steel impedance in 

concrete were subjected to modelling. The 3D visualisation of the system is presented in Fig. 3. 
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Fig. 3. Assumptions for the ‘3D’ model of the steel–concrete system to simulate and analyse the impedance tests: (a) a whole system, (b) a quarter of 

system with two symmetry planes, (c) a strip of system with three theoretical conductive paths, (d) a solid concrete element – described in the text. 

Considering the typical three-electrode system used in electrochemistry to measurements the polarization of metals in 

electrolytes, concrete in the shape of solid with at least one plane surface 1 was the electrically conducting medium in the 

modelling system during the measurements. The steel rebar 2 of φ diameter and L length, whose shortest distance from the 

concrete flat surface, namely, the cover thickness was c, served as the working electrode. The metal counter electrode 3 in 

the rectangular shape of LE × BE dimensions was put on the concrete flat surface to place the edge LE parallel to the axis of 

the reinforcement bar and the edge BE symmetrically to the geometric centre of the rebar cross-section. The reference 

electrode 4 of constant and known potential was applied to the concrete surface through the hole in the geometric centre of 

the rectangular contour of the counter electrode 3. All three electrodes were connected to the potentiostat 5 which controlled 

the performance of an impedance measurement. The reinforcement surface 6 in the shape of the cylinder side surface of the 

height Lp and the base circumference Bp = πφ, situated symmetrically to the geometric centre of the counter electrode 3 was 

assumed to be polarized during the measurement. 

The Cartesian spatial system of coordinates was introduced into the model and the centre of the system was established 

on the concrete flat surface 1 inside the electrode 4. The x axis of the coordinate system was parallel to the rebar 2 axis, and 

the y axis was parallel to the edge BE of the counter electrode 3, while the z axis coincided with the longitudinal axis of the 

reference electrode 4. Regarding the described assumptions, the modelling system has two symmetry planes x-z and y-z. 

During the impedance measurement, the theoretical conductive paths were defined in the modelling three-electrode 

measurement system. It was assumed that the theoretical conductive paths 7 (Fig. 3c) were the elongated curvilinear 

concrete solids whose top surface was on the counter electrode surface 3, and the bottom surface was on the surface of the 

working electrode 2. The model was divided into n elements towards the x axis, m elements towards the y axis and p 

elements towards the z axis (n, m – even numbers) to determine the theoretical conductive paths. Consequently, both the 

counter electrode and the working electrode were composed of the same number n × m of surface elements since their 

thickness was not important for the course of the described physical and chemical effect. However, concrete present 

between these electrodes, serving as the electrically conducting medium was divided into irregular octagonal solid elements 

n × m × p in number. The assumed division into the surface and solid elements was the basis for defining the geometrical 

relationships to determine the coordinates creating the spatial grid of the model nodes. 
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The definitions of local and global geometric factors for steel and concrete were introduced for the purpose of 

considering the measurement system in the model of complex geometry. 

The local geometric factor for concrete γ 
c
i,j on the theoretical conductive path Ti,j was defined as the sum of length 

quotients of the current line segments li,j,k to the conventional surface of the current flow Si,j,k through the solid elements of 

Vi,j,k volume (Fig. 3d). The factor γ ci,j was calculated from the following relationship: 
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And the factor ψi,,j,k in the formula (1) was determined from the following relationship: 
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where V
w

i,j,k is water volume in the volume Vi,j,k of the solid element. The volume of water is expressed as the quotient of 

water mass m
w

i,j,k in the volume Vi,j,k and its bulk density ρw
i,j,k, and similarly, the volume of the solid element is expressed as 

the quotient of the dry concrete mass in the volume Vi,j,k and its bulk density ρc
i,j,k. Then, assuming that the bulk density of 

concrete was the same in each solid element ρ
c
i,j,k = ρc and the bulk density of water in each solid element was the same and 

equal to unity ρ
w

i,j,k = ρw = 1.0 g/cm3. The factor ψi,,j,k subjected to basic conversions can be expressed as the product of 

concrete mass moisture wi,j,k in the element of volume Vi,j,k and mean bulk density of concrete ρc – cf. the formula (2). 

The local geometric factor for steel γ 
s
i,j was defined as the converse product of the rebar polarization area Ap

i,j (located at 

the end of the theoretical conductive path Ti,j) and the quotient of the current line length li,j to the average length of current 

line lmid. The factor γ si,j was calculated from the expression: 
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The formulas describing the global geometric factors for the modelling system were derived from the local geometric 

factors for concrete γ 
c
i,j and steel γ si,j characterizing the theoretical conductive path Ti,j defined by the formulas (1) and (2). 

Regarding two planes of the model symmetry, the global geometric factor for concrete geometry γ c and for steel geometry 

γ s were defined as: 
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The factor γ c describes the volume of concrete through which AC current flows between the counter electrode and the 

rebar during the impedance measurements. It can be observed that, for a specific case, if the length li,j of all current lines 

corresponded to the length of the averaged line lmid, then the inverse of a value of the total polarization area Ap of the rebar 

defined as below would be assigned to the factor γ 
s 
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Each theoretical conductive path Ti,j was assumed to be described by the impedance Zc
i,j, characterizing concrete of γ ci,j 

geometric factor, which was combined in series with the impedance Zs
i,j characterizing steel of γ si,j geometric factor. For 

analysing the impedance spectra, an adequately selected combination of resistances Ri,j and constant phase elements (CPE) 

described by the parameters Yi,j and αi,j [17] was usually sufficient to characterize the electrochemical properties of concrete 
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and steel using the electrical equivalent circuit. Thus, it can be generally assumed that the following function describes the 

equivalent impedance Z
s
i,j of steel at the end of the theoretical conductive path : 
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On the other hand, the equivalent impedance Z
c
i,j of concrete along the theoretical conductive path is described by the 

similar function: 
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The parameters R
s and Ys in the relationship (6) characterize the electrochemical properties with reference to the unit area 

of reinforcing steel, while the analogical parameters R
c and Yc in the equation (7) describe the electrochemical properties 

with reference to the unit volume of concrete. The parameters α
s i αc are the dimensionless coefficients. The above 

relationships can be used to introduce the term of the elementary electrical equivalent circuit. It is an electrical scheme, 

identical at every theoretical conductive path Ti,j, composed of suitably selected combination of resistances and constant 

phase elements, whose parameters Ri,j, Yi,j, αi,j were calculated considering the geometric factors for concrete γ ci,j and steel 

γ 
s
i,j. The exemplary elementary electrical equivalent circuit is shown in Fig. 4b. Regarding the two planes of symmetry, the 

final total equivalent impedance of the modelling steel-concrete system can be determined from the following expression: 
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3. The analysis of studies according to the ‘3D’ model 

The analysis of the spectra from both 5-element series S1 and S2 according to the model ‘3D’ began from the stage, at 

which the so called initial spectrum – obtained at the known length of the polarization range Lp, was established. In the 

discussed tests, all the steel-concrete systems provided the polarization of the whole reinforcement area, namely, the range 

Lp was known and corresponded to the length L of the rebar – cf. Fig. 3a. So, we were able to select the initial spectrum in 

an optional way. Both selected initial spectra (marked as P1 in Fig. 2 and Fig. 5) were analysed in an conventional way 

using the adequately selected equivalent electrical circuit [17] shown in Fig. 4a. 

In the diagram shown in Fig. 4a, R
1 denotes the resistance of liquid phase, while R2, R2a denote the resistance of a double 

layer at the interface of liquid and solid phases of concrete, which capacity is described by Y
2, α2, Y2a, α2a parameters of the 

CPE. The electrochemical parameters of the transient layer of steel – concrete are described by the CPE having the 

parameters Y
3, α3, while the double layer at the interface of pore solution and reinforcing steel is described by the CPE 

having the parameters Y
0, α0 with the charge transfer resistance Rt connected in parallel – cf [18].  

The method of iterative fitting was used to determine the electrochemical characteristics of concrete and steel specified in 

that scheme (Fig. 4a), namely, the resistances r
1, r2, r2a, rt and the parameters of constant phase elements y2, α2, y2a, α2a, y3, 

α
3, y0, α0.. The numerical values of the specified parameters and the statistical evaluation of fitting quality of S1 and S2 

spectra are listed in Table 1. 

 

Fig. 4. Circuits used to analyse the impedance spectra of steel in concrete: (a) equivalent electrical circuit, (b) elementary equivalent electrical circuit. 
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Table 1. Electrochemical parameters and the evaluation of fitting quality of initial spectra of steel in S1 and S2 concrete calculated according to 

the relationships given in Table 2 

Parameters of initial spectra  

with no reference to the material 

area or volume 

Unit parameters  

common for 5 spectra of S1 and S2 series, 

calculated acc. to ‘3D’ model 

converted only with reference  

to the polarization area of steel 

 S1 S2   S1 S2   S1 S2  

r1 = 0 0 Ω R1 = 0 0 Ω·cm R1 = 0 0 Ω·cm 

r2 = 4.543 0.639 kΩ R2 = 21.18 3.576 kΩ·cm R2 = 280.6 39.47 kΩ·cm 

r2a = 1.154 1.293 kΩ R2a = 5.380 7.235 kΩ·cm R2a = 71.28 79.86 kΩ·cm 

y2 = 3.058 80.92 nF·sα-1 Y2 = 0.656 14.46 nF·sα-1/cm Y2 = 0.050 1.310 nF·sα-1/cm2 

α
2 = 0.816 0.752  α

2 = 0.816 0.752  α
2 = 0.816 0.752  

y2a = 1775 284.0 nF·sα-1 Y2a = 380.7 50.76 nF·sα-1/cm Y2a = 28.74 4.598 nF·sα-1/cm2 

α
2a = 0.583 0.669  α

2a = 0.583 0.669  α
2a = 0.583 0.669  

y3 = 2112 4260 μF·sα-1 Y3 = 26.03 52.51 μF·sα-1/cm2 Y3 = 34.19 68.97 μF·sα-1/cm2 

α
3 = 0.269 0.077  α

3 = 0.269 0.077  α
3 = 0.269 0.077  

y0 = 4302 3090 μF·sα-1 Y0 = 53.03 380.9 μF·sα-1/cm2 Y0 = 69.65 500.3 μF·sα-1/cm2 

α
0 = 0.641 0.830  α

0 = 0.641 0.830  α
0 = 0.641 0.830  

rt = 4.804 1.510 kΩ Rt = 389.7 122.5 kΩ·cm2 Rt = 296.7 93.26 kΩ·cm2 

a = 5 2 % a = 5 2 % Ap = 61.76 61.76 cm2 

χ
2 = 540.9 119.8  χ

2 = 533.4 120.6  ikor = 0.18 0.54 μA/cm2 

q = 1.90 0.89  q = 1.89 0.90  CR = 0.002 0.006 mm/year 

 

The electrochemical parameters denoted by small letters for the purpose of this analysis, indicated the characteristics 

with no reference to any area or volume of the material. The fitting quality of the modelling spectra to the experimental ones 

was assessed using the factor q [19] described by the following formula: 
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In the above formula, N denotes a number of frequencies, at which points of the impedance spectrum were determined, 

Np denotes a number of determined variables in the model of steel – concrete system, whereas χ2 is the objective function. 

The parameters Z
e
re,i and Ze

im,i are the real and imaginary components respectively, of the impedance obtained during the 

experimental studies, while Z
c
re,i and Zc

im,i are the corresponding components of the impedance calculated according to the 

‘3D’ model. The value σi in the expression (9) describes the standard deviation of the measurement at i-letter frequency 

estimated as a·|Z
e
i|. The parameter |Ze

i| is the modulus of the impedance measured at i-letter frequency, whereas the constant 

a is the estimated measuring error expressed in percentage. 

Then, using the geometry of the tested system modelled into the original software and using the identified elementary 

equivalent electric (Fig. 4b), the global geometric factors for concrete γ 
c and steel γ s geometries were calculated 

automatically. These factors were used to determine the unit parameters of the ‘3D’ model denoted by capital letters R
t, Y0, 

α
0, Y3, α3, and R1, R2, R2a, Y2, α2, Y2a, α2a. The numerical values of these parameters are shown in Table 1. The correspon-

ding conversion formulas are listed in Table 2. 

The unit parameters of the ‘3D’ model are to be understood as the electrochemical parameters assumed to be independent 

from the geometry of the tested ‘reinforcement – concrete – counter electrode’ system. The papers dealing with the 

discussed issue usually present the electrochemical parameters of concrete and steel, which are calculated with regard to the 

polarization area of steel [20-21], although there are some departures from that rule – cf [22]. However, to refer the results 

from the analysis obtained according to the ’3D’ model to the “typical” unit parameters, the simple relationships for 

converting all concrete and steel characteristics to the polarization area of steel are listed in Table 2. The typical unit 

parameters were denoted by the underlined capital letters, that is, R
1, R2, R2a, Rt and Y2, α2, Y2a, α2a, Y3, α3, Y0, α0, and their 

numerical values are listed in Table 1. 
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Fig. 5. The comparative analysis of test results and modelling simulations of the impact of rebar diameters on the shapes of impedance spectra of steel in 

concrete: (a), (f) – first stage of model simulation in Nyquist plots; (b), (g) – second (last) stage of model simulation in Nyquist plots; (c), (h) – test results 

in Nyquist plots; (d), (i) –last stage of model simulation in Bode plots; (e), (j) – test results in Bode plots  – described in the text. 

Finally, the determined unit parameters (R1, R2, R2a, … in Table 1) of concrete and steel were used to generate the 

theoretical spectra M1, M2, M3, M4 and M5 (Fig. 5) according to the assumptions of the ‘3D’ model. During the modelling 

simulation of spectra, only one parameter from the system geometry, namely, the reinforcement diameter was varying in 

order to compare the model spectra with the experimental ones P1, P2, P3, P4 and P5 obtained at various diameters of the 

rebars. The impact of the moisture content in concrete on the measurement results were expressed using the moisture 

content by mass in concrete wi,,j,k in the Eq. (2). As there were no technical opportunities for measuring the spatial 

distribution of moisture content in concrete, the simplifying assumption was made by approximating the spot moisture by 

the averaged moisture content, that is, wi,j,k = wmid. For that purpose, directly before measuring the impedance, the moisture 

content in concrete was measured with dielectric method and conversed into the moisture content by mass according to the 

empirical formulas, and the arithmetic mean was assumed to be wmid. The conversion formulas were obtained on the basis of 
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the correlation tests on the independent concrete specimens formed simultaneously with the basic elements. The same 

elements were used to determine the bulk density of concrete ρ 
c, which term appears in the Eq. (2). 

Table 2. The relationships between the electrochemical parameters considered in the analysis of impedance spectra of steel in concrete according to the 

‘3D’ model 

STEEL CONCRETE 

Parameters with no 

reference to the material 

area or volume 

Unit parameters Parameters with no 

reference to the material 

area or volume 

Unit parameters 

calculated acc. 

to ‘3D’ model 

converted with reference to 

the polarization area of steel 

calculated acc. 

to ‘3D’ model 

converted with reference to 

the polarization area of steel 
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A
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Y

00
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=  
2

y  
c
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A

y

A

Y
Y

22
2

=

γ

=  

[F·sα-1] [F·sα-1/cm2] [F·sα-1/cm2] [F·sα-1] [F·sα-1/cm] [F·sα-1/cm2] 

y3 converted in an analogous way to y0,  

α
0 and α3 without conversion 

r1 converted in an analogous way to r2 

y2a converted in an analogous way to y2; α2 and α2a without conversion 

4. Conclusions 

Fig. 5 illustrates the Nyquist and Bode plots showing the results of tests and simulations of a single diameter rebar on the 

shapes of impedance spectra of steel in S1 and S2 concrete according to the ‘3D’ model. The experimental and theoretical 

spectra were not deliberately shown on the same plots because each impedance measurement was performed on an 

independent specimen. Thus, in spite of the fact that the identical curing conditions for concrete were provided, the 

electrochemical conditions of reinforcing steel and the electrical properties of concrete will never be the same, although 

similar. 

According to the legend shown in Fig. 5, the experimental spectra were denoted by the letter P and the numbers from 

1 to 5 corresponding to the rebar diameters of φ8, φ12, φ16, φ20 and φ25 mm. The modelling spectra were denoted in a 

similar way, however the letter P was replaced with the letter M and additionally, the increase Δwmid in average moisture 

content by mass in concrete was shown in brackets. Δwmid was defined as the difference between the measured average 

moisture content in concrete surrounding the rebar φ8 mm characterized by the initial spectrum P1, and the iterative fitted 

theoretical moisture content in concrete surrounding the remaining rebar diameters were characterized by spectra P2, P3, P4 

and P5. The theoretical moisture content in concrete is the moisture content by mass, at which the fitting of the modelling 

spectrum to the experimental one provides the best results.  

On the Nyquist plot (Fig. 5a, f), a dotted line indicates the model spectra M2, M3, M4 and M5 obtained at the same 

moisture content by mass in concrete as the initial spectrum M1, whereas on the Nyquist (Fig. 5b, g) and Bode (Fig. 5d, i) 

plots, the solid line indicates the model spectra M2, M3, M4 and M5 after determining the theoretical moisture content in 

concrete. The increase in moisture content Δwmid in the concrete specimens of S1 series was observed to be very low within 

the range of 0.1÷0.2%, whereas in the concrete specimens of S2 series, the increase was found within a wider range varying 

from –1.1 to –1.3%. The determined theoretical moisture contents approximately correspond to the measured average 

moisture contents by mass in the particular specimens. However, these values cannot be compared as spatial distribution of 

moisture content is an important issue, and not the average value. 

The discussed results obtained from the impedance tests on the steel rebars of different diameters in the concrete 

specimens indicate a clear dependence on the various geometry of the steel – concrete system. The proposed ‘3D’ model 

correctly reflects the tendencies towards changing the shapes of impedance spectra observed in the experimental studies. 

The improved conformity of fitting of the model spectra to the experimental ones were obtained by considering in that 

model the moisture content by mass in concrete, however the verification of the moisture content impact on the analysis 

results was of theoretical nature. 
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